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Abstract

Transient natural convection in a low-Prandtl-number ¯uid was computed for a shallow rectangular enclosure of 5 � 5 � 1 heated from

below and cooled from above with four dragless, adiabatic, vertical walls. The model consists of three-directional mass, momentum and

energy balances. These equations were approximated by a HSMAC ®nite-difference method with a hybrid scheme for the inertial terms.

Computations for Ra � 2000 and Pr � 0.01 required an accumulative time of two months. The transient response after a step increase of the

lower-wall temperature was at ®rst a regular oscillation, which then evolved to a series of long rolls with their axes in one direction. These

transient characteristics of the velocity and temperature ®elds are presented graphically. # 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The forced convective behavior of low-Prandtl-number

¯uids such as liquid metals and plasmas is known to differ

functionally from that of high-Prandtl-number ¯uids. This

difference in behavior might also be expected for natural

convection. Liquid metals and molten semi-conducting

materials have become key industrial materials, and their

characteristics of heat and momentum transfer are important

considerations in the design of manufacturing processes for

more ef®cient operations and for products of higher quality.

Examples are continuous steel-casting, ¯oat-casting of

metals in a cold crucible and Czochralski crystal-growing.

In these practical systems, inertial natural convection is

dominant because the Prandtl number is of the order of

0.01. Natural convection in low-Prandtl-number ¯uids has

been observed to be oscillatory [1,2] but the oscillatory

characteristics themselves have not been clari®ed in detail. It

is quite important to clarify these characteristics in order to

obtain ®nely controlled high quality products such as a

single-crystal rod of silicon for future ultra-large scale

integrated electronic circuits.

There has been an extensive amount of work in the ®eld of

material science on the bulk growth of silicon single-crystal

rods. However, there are many ambiguities and inconsis-

tencies in even the recent reports [3±11], probably because

of complicated manufacturing systems such as a Czo-

chralski crystal-growing with buoyancy, separate rotations

of the crystal rod, and radiative heating and cooling. The

Lorentz force from a magnetic ®eld makes the behavior even

more complicated. The present authors have carried out

numerical analyses of Czochralski crystal growing with and

without magnetic ®elds [12±19]. That work suggests that a

good understanding of oscillatory convection in liquid

metals requires separate study in a more simpli®ed geome-

trical system with a single body force. For such a reason we

have turned back to the classical Rayleigh±Benard problem

for a low-Prandtl-number ¯uid as described in the present

paper.

Rayleigh±Benard natural convection in a shallow layer of

¯uid heated from below and cooled from above has been

studied extensively but not in terms of the oscillatory

characteristics of low-Prandtl-number ¯uids. The oscillatory

convection of molten semi-conducting materials has been

known and considered to be responsible for the undesirable

striae in crystal rods [1]. Fundamental studies on oscillatory

convection are expected to clarify the general mechanism of

oscillatory convection and suggest effective ways for its

control. Rayleigh±Benard natural convection was graphi-

cally classi®ed by Krishnamurti [20] and the characteristics

of low-Prandtl-number ¯uid have been studied extensively
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in a series of papers by Clever and Busse [21±23]. Some of

the recent work on applications for material processing has

been described by MuÈller et. al. [24] and a review has been

presented by Ristorcelli and Lumley [25]. However, there

are very few works on the experimental measurements of

Rayleigh convection for low-Prandtl-number ¯uids except

that by Rossby [26]. He studied Rayleigh±Benard natural

convection experimentally in low-Prandtl-number ¯uids in a

shallow layer with and without rotation. According to his

results, irregular temperature ¯uctuations are to be expected

even at only slightly supercritical Rayleigh numbers. Oscil-

latory natural convection of the low Prandtl number ¯uids

heated from a vertical side wall [27±29] or from below [30]

has also been studied by the present authors. For example,

Okada and Ozoe [28] studied the effect of the computational

scheme (central difference or hybrid scheme), four different

grid sizes for the same system, three different time incre-

ments and three different initial conditions for oscillatory

multiple roll cells in a rectangular shallow enclosure for a

hypothetical ¯uid with a Prandtl number equal to zero. The

most striking ®nding was that oscillatory convection may

result from an increase in the grid numbers, i.e., no oscilla-

tion was computed at Gr � 3 � 104 and an aspect ratio of

three for the grid numbers of 61 � 21 and 75 � 25 in the

horizontal and vertical directions, but standing oscillations

were computed for grids of 105 � 35 and 121 � 41. At

Gr � 4 � 104, the amplitude of the maximum stream func-

tion increased almost ten times as the grid numbers were

increased from 75 � 25 to 105 � 35. However, convergence

of the magnitude of the oscillatory amplitude could not be

obtained due to limitations in the available computational

facilities. Surprisingly, the characteristic frequency of the

oscillation was found to be independent of gridsize. Similar

characteristics were obtained by Ozoe and Hara [30] for a

horizontal layer (one depth to four lengths) of liquid metal

heated from below. They studied the effect of the Prandtl

number (0.1, 0.01, 0.001) and the gridsize. Both the mag-

nitude and oscillatory amplitudes of the average Nusselt

number were found with increasing grid meshes of

121 � 31, 161 � 41 and 201 � 51. Again convergence

could not be obtained. However, the critical Rayleigh

number for the occurrence of the oscillatory natural con-

vection was found to be independent of gridsize. This value

was found to be slightly greater than the critical Rayleigh

number of 1708, which is similar to the experimental

®ndings of Rossby [26].

This prior work on oscillatory natural convection of low-

Prandtl-number ¯uids was all for two-dimensional systems.

The present paper is concerned with a transient three-

dimensional system.

2. Model and computational scheme

The computational region is shown in Fig. 1. The width

and length are ®ve times the height. The grid numbers are

51 � 51 � 11. Fig. 2 shows top and side views of the

coordinate system. By means of the dragless and adiabatic

bounding vertical walls, this system simulates an in®nitely

wide shallow layer.

The equations are for transient conservation in an incom-

pressible ¯uid except for the Boussinesq approximation in

the buoyancy term. These equations may be written in non-

dimensional form as follows:
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Fig. 1. Schematics of the computational regime with grids of

51 � 51 � 11.

Fig. 2. Top and side views of the system.
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The dimensionless variables are de®ned as
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an
:

In these equations, q represents temperature ¯uctuations

about the conductive state �c.

The boundary conditions are indicated in Fig. 3(a) and

(b), for the Y � constant and the X � constant planes,

respectively. As noted above, the four vertical side walls

are dragless and have an adiabatic ¯uid interface. The

bottom was kept at a higher temperature of �0.5 with

the addition of absolute random variations of 10ÿ5 or less

in order to initiate convection. The temperature of the top

plate was kept at ÿ0.5.

The above equations of conservation were approximated

by second-order central ®nite-differences, but with a ®rst-

order upwind scheme for the inertial terms when the grid

Peclet number became larger than 2. The computational

region was represented by staggered meshes and solved by

the HSMAC (Highly Simpli®ed Marker and Cell) method

[31]. Computations were carried out with an IBM model

59H (132 M Flops). The present results were obtained from

a 2-month-long run.

Fig. 3. Boundary conditions of the system. (a) For a X±Z (Y � constant) plane. (b) For a Y±Z (X � constant) plane.

Fig. 4. Transient responses of the average velocity components in the X-,

Y- and Z-directions for Pr � 0.01 and Ra � 2000.
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3. Computed results

Computations were carried out for Pr � 0.01 and

Ra � 2000. Fig. 4 shows the transient responses of the three

components of velocity as averaged by summation of their

squares in each cell, then division by the number of cells and

square rooting. The two horizontal velocity components U

and V are represented by the solid and hatched lines,

respectively, and the vertical component W by the dotted

line. The time step �� was 0.001. After about � � 120

(1.2 � 105 time steps), the velocity components all rose

abruptly. This is somewhat similar to the physical instability

caused by small external perturbations of the system. Then,

at about � � 200, the velocity components started to oscil-

late. After three oscillations, the U and V components parted

but again came back together at their original magnitude

after about � � 1000. These peculiar transient characteris-

tics may be understood by observing the velocity and

temperature pro®les at representative instances as follows.

Fig. 5 shows a series of instantaneous top views of

horizontal velocity vectors in a square region of the

Z � 0.25 plane. These 21 instances are indicated with black

circles in Fig. 4 on the response curve for the W velocity

component. In Fig. 5, at � � 180, about six to seven tetra-

gonal or hexagonal cells were formed. These are typical of

the Benard-type cells that result from quick heating. How-

ever, at � � 220, they became parallel roll cells with their

axes in a horizontal and diagonal direction of the square

region. After this, even more complicated modes of ¯ow

occurred, but at � � 400, 560 and 680, a similar diagonal

roll-cell pattern appeared again. In these instances, the

average W velocity component appears to have attained

its peak value. At � � 600 or after, the U values decreased in

magnitude, suggesting an orientation of roll cells in the

Fig. 5. A series of top views of instantaneous velocity vectors in the Z � 0.25 plane for Pr � 0.01 and Ra � 2000.

Fig. 6. A series of top views of instantaneous isotherms in the Z � 0.25 plane for Pr � 0.01 and Ra � 2000.
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X-direction. The graphs at � � 720 to 800 apparently

represent dominant Y-velocity components and a strong

increase in the V-velocity curves. At or after � � 940, the

diagonal roll cells again appeared and attained a similar

structure to that before. Because of the very long comput-

ing time (2 months), the computations were terminated

at this point.

Fig. 6 shows corresponding instantaneous isotherms in

the Z � 0.25 plane. At � � 180, multiple, separate, cylind-

rical cells appeared. However, at � � 220, parallel roll cells

in the diagonal direction of the square region become

dominant. The subsequent transient isotherms correspond

to the velocity vectors shown in Fig. 5.

Fig. 7 shows velocity vectors at � � 180 at various depths

of Z from 0.05 to 0.95. Similar horizontal velocity pro®les

for the tetragonal cells can be seen. Fig. 8(a) shows side-

views at � � 180 and in the four different cross sections

corresponding to Y � 0.95, 1.95, 2.95 and 3.95. Four rolls

are apparent at Y � 1.95 and 2.95. Fig. 8(b) shows side-

views at four different cross sections corresponding to

X � 0.95, 1.95, 2.95 and 3.95. Three rolls can be seen at

X � 0.95 and 3.95. These vertical cross sections correspond

to the tetragonal cells.

Fig. 9 shows perspective views of the velocity vectors at

� � 800, the time when the average velocity component U

attains its minimum magnitude. The X-directional roll cells

appear to be dominant at all heights. This is more apparent

in the vertical cross sectional views as shown next.

Fig. 10 shows corresponding vertical side views in (a) the

X±Z and (b) the Y±Z planes respectively. Fig. 10(a) shows

vertical cross sections at various Y � constant planes in

which only one or two roll cells can be seen. On the other

Fig. 7. Various perspective views of horizontal velocity vectors at various

heights of Z � constant at � � 180 for Pr � 0.01 and Ra � 2000.

Fig. 8. (a) Velocity vectors in X±Z (Y � constant) planes at � � 180 for Pr � 0.01 and Ra � 2000. (b) Velocity vectors in Y±Z (X � constant) planes at

� � 180 for Pr � 0.01 and Ra � 2000.
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hand, Fig. 10(b) shows vertical cross sections at

X � constant planes in which four to ®ve much stronger

roll cells are apparent. The large increase in the average

V-velocity component as shown in Fig. 4 is a consequence

of this orientation of the quasi two-dimensional roll cells.

Over this entire period of time, the average Nusselt

number was about 1.001 or less, and hence is not plotted.

As mentioned in the introduction, convergence of the

numerical computations for oscillatory natural convection

in low-Prandtl-number ¯uids has not been attained with

complete success even for two-dimensional systems. Some

of the details of the present results for a three-dimensional

system would also be expected to be dependent on gridsize.

However, on the basis of the previous studies, the basic

characteristics of the oscillations would be expected to be

independent of gridsize. The computations are limited to a

single aspect ratio, Pr � 0.01 and Ra � 2000. More exten-

sive results may be expected with the present computational

scheme as larger and faster computer facilities become

available in the near future.

4. Conclusions

Transient three-dimensional numerical computations

were successfully carried out for Benard-type roll-cells at

Pr � 0.01 and Ra � 2000. The transient response after a

step change in the wall temperature was at ®rst a regular

oscillation, which then evolved to a series of long roll-cells

with their axes in one direction. The computations revealed

coupling and decoupling of the roll cells. These predictions

still need be tested with experimental measurements.

Fig. 9. Various perspective views of horizontal velocity profiles at various

heights of Z � constant at � � 800 and for � 0.01 and Ra � 2000.

Fig. 10. (a) Velocity vectors in a vertical cross section at X±Z (Y � constant) planes at � � 800 for Pr � 0.01 and Ra � 2000. (b) Velocity vectors in a vertical

cross section at Y±Z (X � constant) planes at � � 800 for Pr � 0.01 and Ra � 2000.
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5. Nomenclature

Symbols

g acceleration due to gravity (msÿ2)

Gr Grashof number � g�(ThÿTc)H
3/n2

H height of a layer (m)

L length of a layer (m)

Nu average Nusselt number qH/k(ThÿTc)

p pressure (Pa)

P �p/p0

Pr Prandtl number � n/a
Ra Rayleigh number � GrPr

T temperature (K)

Tc cold wall temperature (K)

Th hot wall temperature (K)

T0 average temperature � (Th � Tc)/2

u velocity component in the X direction (msÿ1)

U �u/u0

v velocity component in the Y direction (msÿ1)

V �v/u0

w velocity component in the Z direction (msÿ1)

W �w/u0

x horizontal coordinate (m)

X �x/H

y horizontal coordinate (m)

Y �y/H

z vertical coordinate (m)

Z �z/H

Greek Symbls

� thermal diffusivity (m2 sÿ1)

� volumetric coefficient of expansion (Kÿ1)

� difference

� ��-(Zÿ0.5)

� kinematic viscosity (m2 sÿ1)

� �t�/H2

� dimensionless temperature � (TÿT0)/(ThÿTc)
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